
JuniKhyat (UGC Care Group I Listed Journal)

 ISSN: 2278-4632 Vol-8 Issue-02 Aug 2021

E
++

Tailored Instructions to Safeguard Against Attacks on

Memory Integrity
Dr. Subrat Kumar Mohanty

College of Engineering Bhubaneswar

Abstract—Customized instructions have typically been used for enhancing the performance of embedded systems. However, the use of
finding dedicated instructions for security has been rather limited. On the contrary, modern processors are crippled by the threats of
memory integrity attacks, which typically target the control flow of a program and are mitigated at the software level. In this letter, we
analyze the memory exploitation codes being developed as a part of the Cyber Security Awareness Week-2016 competition, which are
based on unsecured memcpy and return address modification by buffer overflow on OpenRISC and RISC- V architectures, and implement

protections at the hardware level. We added eight new instructions to handle the four exploits by designing dedicated hardware stack
and a module for checking against buffer overflow. We have also performed a validation on RISC-V platform and introduced two
new custom instruc- tions to ensure security from unbounded memcpy. The proposed countermeasures and the new instructions are

validated on field programmable gate array platform.

I. INTRODUCTION

MBEDDED electronic control units are an integral part of several critical infrastructures. They are often based on
lightweight processors which run applications developed using high-level languages, like C and C , which do not have

explicit integrity checks for memory operations. The accom- panying compilers are also not adequately smart to detect these
issues, which can lead to severe attacks. Buffer overflow is still one of the major concerns in developing secured applications, and

are based on the absence of proper memory boundary checks during function calls, functions returns, variable access, etc.
Software level countermeasures though claim to prevent memory corruptions; they can itself be bypassed by advance

malwares. Vis-à-vis, protections through hardware are com- paratively more secure as they enforce checks at the physical
level.

A. Related Work

A hardware-based Watchdog for protection against memory integration violation was proposed in [1] to develop a unique
identifier at the hardware level for allotment of each memory location. When this memory location is reaccessed, it checks the
validity of the generated identifier and detects if any abnor- mality exists. In [2], the idea of hardware stack was introduced to defend
against the attacks which trigger malicious code execution by modifying the function return address. During return statement, if
the popped value from the hardware stack does not match with the popped value from the program stack, the processor alerts the
user. Further, in [3], hardware-assisted data-flow isolation mechanism was proposed to ensure pro- tection against memory
integrity attacks. In this case, an extra tag was attached to every memory unit to protect any mali- cious memory update. However,
in both of these work, the implementation platform is not similar to our scenario and thus cannot be applied directly in our
case.

The objective of this letter is to integrate specific customized instruction into the processor architecture to prevent memory
integrity violation attacks. More specifically, we concentrated on two embedded processor architectures, OpenRISC and RISC-
V. We introduced eight different instructions in the OpenRISC architecture to protect against vulnerabilities of return address
modification and insecure execution of memcpy function. Additionally we have shown that though RISC-V architecture can

prevent return address modification through tagged memory, it is still vulnerable against insecure execution of memcpy.

Henceforth, we extended the RISC-V instruction set to introduce two new instructions which can prevent the aforementioned
vulnerability. The overhead of the proposed countermeasures is found to be 30% and 17% for OpenRISC and RISC-V
architecture, respectively. A preliminary version of this letter has been published in [4]. In this letter, the focus is more on the
RISC-V architecture significantly extending the work presented in [4].

II. BUFFER OVERFLOW IN OPENRISC

The theme of embedded security competition of the Cyber Security Awareness Week-2016 (CSAW-2016) event was buffer
overflow attack. We were provided with four different C codes which triggered various malicious routines using buffer overflow
[5]. Details of these exploitation codes and method- ologies behind the attacks are discussed in details in [4]. These exploit are
summarized in Table I.

To protect against these vulnerabilities, we need to prevent the modification of return address through hardware-enforced
control flow and avoid the insecure execution of memcpy function. Next, we define the threat model in details.

.

TABLE I

DESCRIPTION OF EXPLOIT CODES

TABLE II

SUMMARY OF PROPOSED NEW INSTRUCTIONS

A. Threat Model

In this letter, we propose a generic architectural solution against buffer overflow without requiring any intervention by operating
system or compiler. To do so, we propose custom instructions which check for unbounded memcpy instructions and automatically
react to this situation preventing the mali- cious code from mounting a successful attack. Executions of these instructions are done
inside a critical section, where these instructions are allowed to be enabled or disabled either in a pair or they are denied the
permission to execute. For example, in our proposed hardware stack solution, enabling and dis- abling of the hardware stack are
initiated by two customized instructions. However, disabling of hardware stack can be done only from the function in which enable
instruction of hardware stack is executed. These prevents usage of these instruction inside a malicious function like memcpy.

B. Hardware Integration

This section discusses the integration of our customized instructions in embedded processor architecture. ExploitsTABLE III

EFFECT OF THE COUNTERMEASURE ON CSAW EXPLOITS

(a) (b)

Fig. 1. Hardware modification. (a) Hardware stack. (b) Secure memcpy().

and thus keeps track of the correct control flow of the pro- gram. The architectural diagram of hardware stack is shown in Fig.
1(a).

2) Securing Memory Access (Secure memcpy): To prevent attacks based on insecure memcpy, we propose hardware- enforced

secure memcpy [Fig. 1(b)]. Our secure memcpy implement hardware-enforced bound check to protect against buffer overflow.

Our strategy is to store the location of the last variable declared in a specific register. The memcpy function requires the content r3,

r4, and r5 registers, as these three regis- ters store the function’s argument values. Register r3 stores the starting address of the
buffer. Hence, we can easily compute the buffer size by subtracting the address stored in the register r3 from the address of the
last variable. If the buffer size does not match with the parameter count of the memcpy function, we use the available buffer size

as an argument to memcpy function rather than count. The effect of these countermea- sures on the exploit codes are

summarized in Table III, while a complete description is reported in [4].

A user can use these instructions to activate the countermea- sure to prevent buffer overflow. In our threat model, we assume that
the supplied libraries to the user may have some insecure features which can be exploited by a malicious adversary. The proposed
new instructions can be placed at appropriate posi-
which corrupts memory can be prevented by introducing hardware-enforced bound check which will secure functions like
memcpy. On the other hand, exploits, which corrupt con- trol flow of a program, can be prevented by keeping a copy of the

function return address in a hardware stack which a user process cannot access. To integrate these countermeasures, we have added
eight new instructions to the OpenRISC architec- ture. Table II summarizes these eight instructions. Next, we present a brief
description of their operational principles.

1) Implementing Hardware Enforced Control Flow: To ensure a hardware-enforced control flow, we have imple- mented a
hardware stack which, when enabled, keeps a copy of the function return address for each function call. The hardware stack can
be controlled by four instructions. The l.cust7 instruction enables the hardware stack and forces the processor to read the return

address from the hardware stack rather than the return address register r9. Hence, in this scenario, modifying the content of r9 is of
no use as the hard- ware stack does not get edited by an eventual stack overflowtion before the execution of the supplied library
function to ensure the integrity of the control flow of the program. An example of such is shown in the following code snippet.

C. Result and Performance

We have integrated the proposed countermeasures and new instructions in the OpenRISC processor and have implemented it on
DE0-NANO board. We have successfully detected and prevented the buffer overflow attack for each of the given exploits of
CSAW competition [4]. The modified proces- sor architecture of OpenRISC occupies 15339 logic ele- ments, whereas the
logic element requirement of the original OpenRISC architecture is 11750. The critical path of the

 Code 1. Buffer overflow in RISC-V.

Fig. 2. Illustration of vulnerability due to insecure memcpy.

OpenRISC processor does not change after the integration of the proposed countermeasures. Additionally, as we have shown in [4],
we need to execute four extra instructions to ensure secure memcpy or to use the proposed hardware stack. Thus, to prevent the

malicious code execution, the overhead is the execution time of this four extra instruction.

III. VALIDATION ON RISC-V

We extended the evaluation of the instructions for protection in RISC-V. Our RISC-V platform is based on Pulpino archi- tecture
[6] which is utilized in the Shakti processor [7]. This processor core implements the base RISC-V instruction set with some
additional instructions for efficient implementation of post-increment, multiplication, and accumulation.

RISC-V architecture is an upgrade of OpenRISC instruction set. Henceforth in RISC-V, designers have already integrated
countermeasures to prevent malicious execution through buffer overflow attacks. The exploits provided in the CSAW compe- tition
either try to modify the return address of the function or try to take advantage of the insecure memcpy function. However,

RISC-V architecture prevents any malicious mod- ification of return address through the tagged memory countermeasure [8].

When tagged memory is used, the archi- tecture maintains a tag bit which can only be set when the return address is modified

through the function calls. Any other modification (due to buffer overflow or due to a bug) of memory locations which stores
the value of return address will reset the tag bit. During the return call, the architecture will interrupt the program execution if

the tag bit is not set, thus preventing any malicious code execution.

RISC-V architecture though provides protection against malicious modification of return address value, it is still vul- nerable
to attacks which exploit insecure memcpy functions. We illustrate this vulnerability with a simple code snippet 1. This example

shows the threat of insecure execution of memcpy function. The objective of this code is to modify the value of the variable

My_Int without even accessing it. This is achieved by inducing buffer overflow through memcpy function which does not offer

any bound check. As it is shown

+
+

−

−

+
− = + − = +

in Fig. 2, that objective is achieved.

This threat can be mitigated by using a secured memcpy similar to the one we proposed for the OpenRISC architecture.

However, due to the difference between the ISA of OpenRISC and RISC-V, the exact implementation of the secure memcpy will

be different. We will explain the details of the imple- mentation starting from the assembly realization of the attack routine
presented in Code 1.

The assembly routine starts with the initialization of the stack pointer. Then the value of the return address register

Code 2. Assembly code of Code 1.

TABLE IV

MEMORY ALLOCATION INSIDE RISC-V

(ra) and frame pointer register (s0) are stored at the appro- priate location and the frame pointer register is updated with value sp
64. Consequently, memory is allocated for variable My_Int at sp 44. Finally, function calls corresponding to printf, strlen,

and memcpy are performed. In our anal- ysis, we ignore the function call of printf and strlen and concentrate on the execution

of memcpy function. RISC-V architecture provides 6 registers (a0 a5) which are used to pass the arguments of the functions.

memcpy function requires three arguments which are stored in registers a0, a1, and a2. The value stored in a0 and a1 indicates

the starting address of destination (c) and source (bar) arrays, respectively, whereas a2 indicates the number of characters to

be copied into the destination array from source array. As visible in Code 2, the starting address of the character array c

is computed by instruction addi a5,s0, 48 This means that the starting address of the character array c is s0 48 sp

64 48 sp 16, whereas the variable My_Int is stored in location sp 44. It must be noted that in RISC-V architecture the

address values are 64 bits. The integer size 32 bit and a character size is 8 bit. Additionally, RISC-V supports byte level addressing.
Using all these infor- mation, we were able to construct the memory allocation table as shown in Table IV. From Table IV, we see
that when we try to copy array bar into array c, we have an overflow, since the size of bar is larger than size of c. This overflow

eventually modifies the value of the My_Int variable. To protect from this unbounded memory copy, we enforce a hardware

induced bound check of the source and destination arrays. We devise a method to count the number of memory blocks allocated
for destination arrays. In Fig. 3, we show the architectural block diagram of the proposed countermeasure.

RISC-V natively supports the addition of new instructions.
We integrated our instructions using this existing support. To prevent the buffer overflow vulnerability we have introduced two
new customized instructions in the RISC-V ISA. The first instruction (lr.cust1) will set the activate flag (Fig. 3) which in

turn will set the cust_inst_en signal. This is a control signal which makes the other modules of the counter- measure active.

Now, we first calculate the available memory blocks for the destination array. This can be computed by observing the starting
address of the destination array and the address of the last variable declared. The address of the last

TABLE V
RESOURCE UTILIZATION WITH AND WITHOUT COUNTERMEASURE FOR

DECODE LOGIC OF RISC-V ARCHITECTURE

Fig. 3. Execution of the proposed countermeasure.

−

TABLE VI
RESOURCE UTILIZATION WITH AND WITHOUT COUNTERMEASURE FOR

COMPLETE RISC-V ARCHITECTURE

Code 3. Protected C code in RISC-V.

variable declared can be found by observing the instruction sw a5, 20(s0), whereas starting address of the destina- tion

array can be found by observing addi a5,s0,-48. We calculate the available memory blocks of destination array by

subtracting the immediate offset value of the aforemen- tioned instructions. Once the value of available memory blocks is calculated,
we compare it with the third argument of the memcpy function, which indicates the number of character elements to be copied. The

value of this argument get stored in the a2 register through mv a2, a4 instruction. It must be noted that there is no explicit

move instruction in RISC- V ISA. Rather, mv,a2,a4 gets implemented by executing addi a2,a4,0. If the value of the third

argument is larger than the available memory blocks of the destination array, we set the bo_detect flag indicating the occurrence

of buffer overflow. We change the value of the a2 register with the size of the destination array if bo_detect flag is set.
Code 3 shows the protected C code which incorporates the

countermeasure discussed above. We have added two custom instructions cust1 and cust2 with opcodes 0x02C5856B and

0x02C5852B using the assembly extension in the C code. The fence instructions are added before the assembly extensions to

guarantee ordering between memory opera- tions. The signal activate goes high whenever the cust1 instruction is encountered

and it is pulled down to low when the cust2 instruction is encountered.

A. Overhead and Result

We implemented RISC-V architecture on Kintex-7 device available in Sakura-X board using Xilinx’s Vivado 2016.1 ver- sion.
To integrate the proposed countermeasures, we modified the decode section of RISC-V architecture. The correspond- ing overhead

only for the decode module is shown in Table V. Table VI gives the resource utilization for the entire RISC-V architecture

which shows an increase in look up table, look up table based RAM, flip-flops, block RAM, BUFG, and input-output pins resources
by 4.66, 56.4, 14, 0.3, 0.5, and 53.3%, respectively, in the countermeasure design. Overall the overhead on the entire RISC-V
architecture is approximately 16%. Critical path of RISC-V processor does not change after the integration of the countermeasure
and we need execution of two extra instruction to prevent the execution of insecure memcpy as shown in Code 3.

IV. CONCLUSION

We addressed hardware-enforced security techniques in this letter to guarantee buffer overflow attack detection and prevention.
Eight additional customized instructions have been added to the OpenRISC instruction structures. When followed, these
instructions can stop any breach of program control flow and memory integrity by guarding against return address modification
and unauthorized memory access. These instructions can be instantiated by the user without the need to modify the Linux kernel
or compiler. We have successfully stopped all of the exploits provided in the CSAW competition on the specified Linux platform.
Additionally, we have demonstrated that the RISC-V architecture is susceptible to buffer overflow attacks since the unsafe
memcpy function is executed without enforcing a bound check. With few changes, the suggested countermeasure—which
guarantees the safe execution of the memcpy function—can also be used with the RISC-V architecture. Given the enormous risk
of buffer overflow, the overhead of the suggested countermeasures for the OpenRISC and RISC-V architectures has been
disclosed and is negligible.

REFERENCES

[1] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic, “Watchdog: Hardware for safe and secure manual memory management and full memory safety,” in
Proc. ISCA, Portland, OR, USA, 2012, pp. 189–200.

[2] H. Ozdoganoglu, T. N. Vijaykumar, C. E. Brodley, B. A. Kuperman, and

A. Jalote, “SmashGuard: A hardware solution to prevent security attacks on the function return address,” IEEE Trans. Comput., vol. 55, no. 10, pp. 1271–
1285, Oct. 2006.

[3] C. Song et al., “HDFI: Hardware-assisted data-flow isolation,” in Proc. IEEE Symp. Secur. Privacy (SP), San Jose, CA, USA, May 2016, pp. 1–17.

[4] M. Alam et al., “SmashClean: A hardware level mitigation to stack smashing attacks in OpenRISC,” in Proc. MEMOCODE, 2016, pp. 1–4.

[5] Sample Exploits for OpenRISC Linux, Accessed: Aug. 3, 2018. [Online]. Available: https://github.com/nekt/csaw_esc_2016/tree/master/ tools/exploits

[6] A. Traber et al., “PULPino: A small single-core RISC-V SoC,” in Proc. RISCV Workshop, 2016. [Online]. Available: http://riscv.org/wp-
content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf

[7] A. Menon, S. Murugan, C. Rebeiro, N. Gala, and K. Veezhinathan, “Shakti-T: A RISC-V processor with light weight security extensions,” in Proc. ACM
HASP, Toronto, ON, Canada, 2017, pp. 1–8.

[8] P. Jantscher, M. Werner, and S. Mangard. Counteracting Code- Reuse Attacks Using Tagged Memory on a RISC-V Architecture. Accessed: Aug. 3, 2018.
[Online]. Available: https://diglib.tugraz.at/ download.php?id=5891c8d7bc3b4&location=browse

http://riscv.org/wp-

