
JuniKhyat                                                                               ( UGC Care Group I Listed Journal)  

            ISSN: 2278-4632                                                                          Vol-8 Issue-02  Aug 2021  

 

E 
++ 

Tailored Instructions to Safeguard Against Attacks on 

Memory Integrity 
Dr. Subrat Kumar Mohanty 

College of Engineering Bhubaneswar 

 

Abstract—Customized instructions have typically been used for enhancing the performance of embedded systems. However, the use of 
finding dedicated instructions for security has been rather limited. On the contrary, modern processors are crippled by the threats of 
memory integrity attacks, which typically target the control flow of a program and are mitigated at the software level. In this letter, we 
analyze the memory exploitation codes being developed as a part of the Cyber Security Awareness Week-2016 competition, which are 
based on unsecured memcpy and return address modification by buffer overflow on OpenRISC and RISC- V architectures, and implement 

protections at the hardware level. We added eight new instructions to handle the four exploits by designing dedicated hardware stack 
and a module for checking against buffer overflow. We have also performed a validation on RISC-V platform and introduced two 
new custom instruc- tions to ensure security from unbounded memcpy. The proposed countermeasures and the new instructions are 

validated on field programmable gate array platform. 

 

I. INTRODUCTION 

MBEDDED electronic control units are an integral part of several critical infrastructures. They are often based on 
lightweight processors which run applications developed using high-level languages, like C and C , which do not have 

explicit integrity checks for memory operations. The accom- panying compilers are also not adequately smart to detect these 
issues, which can lead to severe attacks. Buffer overflow is still one of the major concerns in developing secured applications, and 

are based on the absence of proper memory boundary checks during function calls, functions returns, variable access, etc. 
Software level countermeasures though claim to prevent memory corruptions; they can itself be bypassed by advance 

malwares. Vis-à-vis, protections through hardware are com- paratively more secure as they enforce checks at the physical 
level. 

A. Related Work 

A hardware-based Watchdog for protection against memory integration violation was proposed in [1] to develop a unique 
identifier at the hardware level for allotment of each memory location. When this memory location is reaccessed, it checks the 
validity of the generated identifier and detects if any abnor- mality exists. In [2], the idea of hardware stack was introduced to defend 
against the attacks which trigger malicious code execution by modifying the function return address. During return statement, if 
the popped value from the hardware stack does not match with the popped value from the program stack, the processor alerts the 
user. Further, in [3], hardware-assisted data-flow isolation mechanism was proposed to ensure pro- tection against memory 
integrity attacks. In this case, an extra tag was attached to every memory unit to protect any mali- cious memory update. However, 
in both of these work, the implementation platform is not similar to our scenario and thus cannot be applied directly in our 
case. 

The objective of this letter is to integrate specific customized instruction into the processor architecture to prevent memory 
integrity violation attacks. More specifically, we concentrated on two embedded processor architectures, OpenRISC and RISC-
V. We introduced eight different instructions in the OpenRISC architecture to protect against vulnerabilities of return address 
modification and insecure execution of memcpy function. Additionally we have shown that though RISC-V architecture can 

prevent return address modification through tagged memory, it is still vulnerable against insecure execution of memcpy. 

Henceforth, we extended the RISC-V instruction set to introduce two new instructions which can prevent the aforementioned 
vulnerability. The overhead of the proposed countermeasures is found to be 30% and 17% for OpenRISC and RISC-V 
architecture, respectively. A preliminary version of this letter has been published in [4]. In this letter, the focus is more on the 
RISC-V architecture significantly extending the work presented in [4]. 

 
II. BUFFER OVERFLOW IN OPENRISC 

The theme of embedded security competition of the Cyber Security Awareness Week-2016 (CSAW-2016) event was buffer 
overflow attack. We were provided with four different C codes which triggered various malicious routines using buffer overflow 
[5]. Details of these exploitation codes and method- ologies behind the attacks are discussed in details in [4]. These exploit are 
summarized in Table I. 

To protect against these vulnerabilities, we need to prevent the modification of return address through hardware-enforced 
control flow and avoid the insecure execution of memcpy function. Next, we define the threat model in details. 
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TABLE I 

DESCRIPTION  OF  EXPLOIT  CODES 

 

 

TABLE II 

SUMMARY  OF  PROPOSED  NEW  INSTRUCTIONS 

 

 
A. Threat Model 

In this letter, we propose a generic architectural solution against buffer overflow without requiring any intervention by operating 
system or compiler. To do so, we propose custom instructions which check for unbounded memcpy instructions and automatically 
react to this situation preventing the mali- cious code from mounting a successful attack. Executions of these instructions are done 
inside a critical section, where these instructions are allowed to be enabled or disabled either in a pair or they are denied the 
permission to execute. For example, in our proposed hardware stack solution, enabling and dis- abling of the hardware stack are 
initiated by two customized instructions. However, disabling of hardware stack can be done only from the function in which enable 
instruction of hardware stack is executed. These prevents usage of these instruction inside a malicious function like memcpy. 

 
B. Hardware Integration 

This section discusses the integration of our customized instructions in embedded processor architecture. ExploitsTABLE III 

EFFECT  OF  THE  COUNTERMEASURE  ON  CSAW EXPLOITS 
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Fig. 1. Hardware modification. (a) Hardware stack. (b) Secure memcpy(). 

 
and thus keeps track of the correct control flow of the pro- gram. The architectural diagram of hardware stack is shown in Fig. 
1(a). 

2) Securing Memory Access (Secure memcpy): To prevent attacks based on insecure memcpy, we propose hardware- enforced 

secure memcpy [Fig. 1(b)]. Our secure memcpy implement hardware-enforced bound check to protect against buffer overflow. 

Our strategy is to store the location of the last variable declared in a specific register. The memcpy function requires the content r3, 

r4, and r5 registers, as these three regis- ters store the function’s argument values. Register r3 stores the starting address of the 
buffer. Hence, we can easily compute the buffer size by subtracting the address stored in the register r3 from the address of the 
last variable. If the buffer size does not match with the parameter count of the memcpy function, we use the available buffer size 

as an argument to memcpy function rather than count. The effect of these countermea- sures on the exploit codes are 

summarized in Table III, while a complete description is reported in [4]. 



 

 

A user can use these instructions to activate the countermea- sure to prevent buffer overflow. In our threat model, we assume that 
the supplied libraries to the user may have some insecure features which can be exploited by a malicious adversary. The proposed 
new instructions can be placed at appropriate posi- 
which corrupts memory can be prevented by introducing hardware-enforced bound check which will secure functions like 
memcpy. On the other hand, exploits, which corrupt con- trol flow of a program, can be prevented by keeping a copy of the 

function return address in a hardware stack which a user process cannot access. To integrate these countermeasures, we have added 
eight new instructions to the OpenRISC architec- ture. Table II summarizes these eight instructions. Next, we present a brief 
description of their operational principles. 

1) Implementing Hardware Enforced Control Flow: To ensure a hardware-enforced control flow, we have imple- mented a 
hardware stack which, when enabled, keeps a copy of the function return address for each function call. The hardware stack can 
be controlled by four instructions. The l.cust7 instruction enables the hardware stack and forces the processor to read the return 

address from the hardware stack rather than the return address register r9. Hence, in this scenario, modifying the content of r9 is of 
no use as the hard- ware stack does not get edited by an eventual stack overflowtion before the execution of the supplied library 
function to ensure the integrity of the control flow of the program. An example of such is shown in the following code snippet. 

 

 
 

C. Result and Performance 

We have integrated the proposed countermeasures and new instructions in the OpenRISC processor and have implemented it on 
DE0-NANO board. We have successfully detected and prevented the buffer overflow attack for each of the given exploits of 
CSAW competition [4]. The modified proces- sor architecture of OpenRISC occupies 15339 logic ele- ments, whereas the 
logic element requirement of the original OpenRISC architecture is 11750. The critical path of the 

 

 
 

 
 
 
 

 
 

 Code 1. Buffer overflow in RISC-V. 

 

 

Fig. 2.   Illustration of vulnerability due to insecure memcpy. 

 
OpenRISC processor does not change after the integration of the proposed countermeasures. Additionally, as we have shown in [4], 
we need to execute four extra instructions to ensure secure memcpy or to use the proposed hardware stack. Thus, to prevent the 

malicious code execution, the overhead is the execution time of this four extra instruction. 

 
III. VALIDATION ON RISC-V 

We extended the evaluation of the instructions for protection in RISC-V. Our RISC-V platform is based on Pulpino archi- tecture 
[6] which is utilized in the Shakti processor [7]. This processor core implements the base RISC-V instruction set with some 
additional instructions for efficient implementation of post-increment, multiplication, and accumulation. 

RISC-V architecture is an upgrade of OpenRISC instruction set. Henceforth in RISC-V, designers have already integrated 
countermeasures to prevent malicious execution through buffer overflow attacks. The exploits provided in the CSAW compe- tition 
either try to modify the return address of the function or try to take advantage of the insecure memcpy function. However, 

RISC-V architecture prevents any malicious mod- ification of return address through the tagged memory countermeasure [8]. 

When tagged memory is used, the archi- tecture maintains a tag bit which can only be set when the return address is modified 

through the function calls. Any other modification (due to buffer overflow or due to a bug) of memory locations which stores 
the value of return address will reset the tag bit. During the return call, the architecture will interrupt the program execution if 

the tag bit is not set, thus preventing any malicious code execution. 

RISC-V architecture though provides protection against malicious modification of return address value, it is still vul- nerable 
to attacks which exploit insecure memcpy functions. We illustrate this vulnerability with a simple code snippet 1. This example 

shows the threat of insecure execution of memcpy function. The objective of this code is to modify the value of the variable 

My_Int without even accessing it. This is achieved by inducing buffer overflow through memcpy function which does not offer 

any bound check. As it is shown 
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in Fig. 2, that objective is achieved. 
 
This threat can be mitigated by using a secured memcpy similar to the one we proposed for the OpenRISC architecture. 

However, due to the difference between the ISA of OpenRISC and RISC-V, the exact implementation of the secure memcpy will 

be different. We will explain the details of the imple- mentation starting from the assembly realization of the attack routine 
presented in Code 1. 

The assembly routine starts with the initialization of the stack pointer. Then the value of the return address register 

Code 2.   Assembly code of Code 1. 

 
TABLE IV 

MEMORY  ALLOCATION  INSIDE  RISC-V 

 

 
(ra) and frame pointer register (s0) are stored at the appro- priate location and the frame pointer register is updated with value sp 
64. Consequently, memory is allocated for variable My_Int at sp 44. Finally, function calls corresponding to printf, strlen, 

and memcpy are performed. In our anal- ysis, we ignore the function call of printf and strlen and concentrate on the execution 

of memcpy function. RISC-V architecture provides 6 registers (a0   a5) which are used to pass the arguments of the functions. 

memcpy function requires three arguments which are stored in registers a0, a1, and a2. The value stored in a0 and a1 indicates 

the starting address of destination (c) and source (bar) arrays, respectively, whereas a2 indicates the number of characters to 

be copied into the destination array from source array. As visible in Code 2, the starting address of the character array c 

is computed by instruction addi a5,s0, 48 This means that the starting address of the character array c is s0    48    sp    

64    48     sp     16, whereas the variable My_Int is stored in location sp  44. It must be noted that in RISC-V architecture the 

address values are 64 bits. The integer size 32 bit and a character size is 8 bit. Additionally, RISC-V supports byte level addressing. 
Using all these infor- mation, we were able to construct the memory allocation table as shown in Table IV. From Table IV, we see 
that when we try to copy array bar into array c, we have an overflow, since the size of bar is larger than size of c. This overflow 

eventually modifies the value of the My_Int variable. To protect from this unbounded memory copy, we enforce a hardware 

induced bound check of the source and destination arrays. We devise a method to count the number of memory blocks allocated 
for destination arrays. In Fig. 3, we show the architectural block diagram of the proposed countermeasure. 

RISC-V natively supports the addition of new instructions. 
We integrated our instructions using this existing support. To prevent the buffer overflow vulnerability we have introduced two 
new customized instructions in the RISC-V ISA. The first instruction (lr.cust1) will set the activate flag (Fig. 3) which in 

turn will set the cust_inst_en signal. This is a control signal which makes the other modules of the counter- measure active. 

Now, we first calculate the available memory blocks for the destination array. This can be computed by observing the starting 
address of the destination array and the address of the last variable declared. The address of the last 

TABLE V 
RESOURCE  UTILIZATION  WITH  AND  WITHOUT  COUNTERMEASURE  FOR 

DECODE LOGIC OF RISC-V ARCHITECTURE 

 

 

 

 

 
Fig. 3.   Execution of the proposed countermeasure. 



 

 

− 

TABLE VI 
RESOURCE  UTILIZATION  WITH  AND  WITHOUT  COUNTERMEASURE  FOR 

COMPLETE  RISC-V ARCHITECTURE 

  
 

Code 3. Protected C code in RISC-V. 

 
variable declared can be found by observing the instruction sw a5, 20(s0), whereas starting address of the destina- tion 

array can be found by observing addi a5,s0,-48. We calculate the available memory blocks of destination array by 

subtracting the immediate offset value of the aforemen- tioned instructions. Once the value of available memory blocks is calculated, 
we compare it with the third argument of the memcpy function, which indicates the number of character elements to be copied. The 

value of this argument get stored in the a2 register through mv a2, a4 instruction. It must be noted that there is no explicit 

move instruction in RISC- V ISA. Rather, mv,a2,a4 gets implemented by executing addi a2,a4,0. If the value of the third 

argument is larger than the available memory blocks of the destination array, we set the bo_detect flag indicating the occurrence 

of buffer overflow. We change the value of the a2 register with the size of the destination array if bo_detect flag is set. 
Code 3 shows the protected C code which incorporates the 

countermeasure discussed above. We have added two custom instructions cust1 and cust2 with opcodes 0x02C5856B and 

0x02C5852B using the assembly extension in the C code. The fence instructions are added before the assembly extensions to 

guarantee ordering between memory opera- tions. The signal activate goes high whenever the cust1 instruction is encountered 

and it is pulled down to low when the cust2 instruction is encountered. 
 

A. Overhead and Result 

We implemented RISC-V architecture on Kintex-7 device available in Sakura-X board using Xilinx’s Vivado 2016.1 ver- sion. 
To integrate the proposed countermeasures, we modified the decode section of RISC-V architecture. The correspond- ing overhead 

only for the decode module is shown in Table V. Table VI gives the resource utilization for the entire RISC-V architecture 

which shows an increase in look up table, look up table based RAM, flip-flops, block RAM, BUFG, and input-output pins resources 
by 4.66, 56.4, 14, 0.3, 0.5, and 53.3%, respectively, in the countermeasure design. Overall the overhead on the entire RISC-V 
architecture is approximately 16%. Critical path of RISC-V processor does not change after the integration of the countermeasure 
and we need execution of two extra instruction to prevent the execution of insecure memcpy as shown in Code 3. 

IV. CONCLUSION 

We addressed hardware-enforced security techniques in this letter to guarantee buffer overflow attack detection and prevention. 
Eight additional customized instructions have been added to the OpenRISC instruction structures. When followed, these 
instructions can stop any breach of program control flow and memory integrity by guarding against return address modification 
and unauthorized memory access. These instructions can be instantiated by the user without the need to modify the Linux kernel 
or compiler. We have successfully stopped all of the exploits provided in the CSAW competition on the specified Linux platform. 
Additionally, we have demonstrated that the RISC-V architecture is susceptible to buffer overflow attacks since the unsafe 
memcpy function is executed without enforcing a bound check. With few changes, the suggested countermeasure—which 
guarantees the safe execution of the memcpy function—can also be used with the RISC-V architecture. Given the enormous risk 
of buffer overflow, the overhead of the suggested countermeasures for the OpenRISC and RISC-V architectures has been 
disclosed and is negligible. 
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